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Abstract-A damage mechanics model is presented to characterize brittle failure in elastic fiber­
reinforced composite materials. An overall fourth-rank damage effect tensor is introduced based
on the hypothesis of elastic energy equivalence to account for the overall damage of the composite
system. In addition, two local (matrix and fiber) fourth-rank damage effect tensors are introduced
to account for the local effects ofdamage experienced by both the matrix and the fibers. The overall
and local damage tensors are correlated together using micromechanical considerations.

The explicit constitutive equations for the damaged material are derived for a uniaxially loaded
unidirectional thin fiber-reinforced composite lamina. The model is also applied to a unidirectional
thin lamina under a state of plane stress. New expressions are derived for the stress and strain
concentration factors for the damaged material in terms of the undamaged concentration factors
and the damage variables. In addition, explicit expressions are obtained for the overall and local
fourth-rank damage effect tensors. The research presented in this work is the three-dimensional
generalization of the uniaxial tension model formulated previously by the authors.

1. INTRODUCTION

Fiber-reinforced composite materials play an important role in the industry today through
the design and manufacture of advanced materials capable of attaining higher
stiffness/density and strength/density ratios. Of particular importance is the problem of
damage initiation and evolution in fiber-reinforced metal matrix composite plates. Although
the literature is rich in new developments in the composite materials technology, it lacks
tremendously a consistent analysis of damage mechanisms in composite materials.

In the analysis of composite materials, one can follow a continuum approach or a
micromechanical approach. In the continuum approach, the composite material is treated as
an orthotropic or transversely isotropic medium. Then the classical equations oforthotropic
elasticity are used in the analysis (Talreja, 1985, 1986; Christensen, 1988, 1990). No
distinction is made between the matrix and the fibers in this approach and therefore, this
approach lacks the ability to account for local effects and especially the effects of the
matrix-fiber interaction. There were some attempts to include damage using the continuum
approach (Talreja, 1985; Shen et al., 1985; Lene, 1986). However, these attempts lack the
distinction between matrix and fiber damage or damage due to the matrix-fiber interaction.

During the past two decades, researchers have been using micromechanical methods in
the analysis of composite materials. The advantages of using such methods are that local
effects can be accounted for and different damage mechanisms can be identified. Hill (1965,
1972) introduced volume averages of stress and strain increments in the matrix and fibers
and introduced certain concentration factors to relate these volume averages to the overall
uniform increments. Dvorak and Bahei-EI-Din (1979, 1982, 1987) used Hill's method to
analyse the elasto-plastic behavior of fiber-reinforced composite materials. They considered
elastic fibers embedded in an elasto-plastic matrix and identified two distinct deformation
modes; matrix dominated and fiber dominated. They concluded that the fiber-dominated
mode is general in the sense that it can be treated as a general case of plastic deformation
of a heterogeneous medium.

A thermomechanical constitutive theory has been recently proposed by Allen and
Harris (1987) to analyse distributed damage in elastic composites. In particular, the problem
of matrix cracking has been extensively studied in the literature (Dvorak et aI., 1985;
Dvorak and Laws, 1987; Laws and Dvorak, 1987; Allen et aI., 1987, 1988; Lee et al., 1989).
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The theoretical formulation presented here is based on the concept of effective stress
that was originally proposed by Kachanov (1958). The pioneering work of Kachanov
(1958) started what is now known as continuum damage mechanics. Different researchers
(Lemaitre, 1985, 1986; Chaboche, 1988a, b; Krajcinovic, 1983, 1984) used continuum
damage mechanics to analyse different types of damage in materials ranging from brittle
fracture to ductile failure. However, no attempt has been made to use the concepts of
continuum damage mechanics to analyse damage in composite materials using the micro­
mechanical approach. It should be mentioned that some researchers (Talreja, 1985) have
used it to analyse damage in composite materials using the continuum approach by modeling
the composite as a transversely isotropic medium.

In this work, continuum damage mechanics is used with a micromechanical composite
model to analyse damage in composite materials. Both overall and local damage variables
are introduced to model the overall and local damage effects. Stress and strain concentration
factors are derived for the damaged composite. The model is applied in detail to a uni­
directional thin lamina that is subjected to uniaxial tension. It is also applied to a uni­
directional thin lamina under a state of plane stress. The research presented in this work is
the three-dimensional generalization of the uniaxial tension model derived previously by
the authors (Kattan and Voyiadjis, 1993).

2. THEORETICAL FORMULATION

2.1. Definitions and assumptions
Consider a body of fiber-reinforced composite material in the initial undeforrned and

undamaged configuration Co. Let C be the configuration of the body that is both damaged
and deformed after a set of external agencies act on it. Following the concept of effective
stress (Kachanov, 1958; Murakami, 1988), consider a fictitious configuration of the body
Cobtained from C by removing all the damage that the body (both matrix and fibers) has
undergone, I.e. C is the state of the body after it had deformed without damage. Assume
that the representative volume element in Co is statistically homogeneous, and is free of
voids and cracks initially. Assume also that the composite is loaded by an overall stress or
strain field which is followed by increments of loading. The overall stress or strain fields
are assumed to be uniform. The effective overall stress is defined in the configuration C as
the stress in a perfectly-bonded two-phase composite free of cracks or voids.

The composite material is assumed to consist of elastic fibers and an elastic matrix.
The fibers are continuous, aligned and equally spaced. It is also assumed that the elastic
strains are small (infinitesimal). Therefore, the elastic strain tensor can be taken to be the
usual engineering elastic strain tensor 8. It is also assumed that there exists an elastic strain
energy function such that a linear relation can be used between the Cauchy stress tensor a
and the engineering elastic strain tensor 8. In fact, the tensor rate Ii for small elastic
deformations is equal to the elastic part of the spatial strain rate tensor d where second
order terms are neglected.

In the following, quantities are defined in the configuration C of the overall composite
system. Barred quantities are defined in the configuration Cof the overall composite system.
Only Cartesian tensors are considered in this work with their tensor components denoted
by subscripts with the usual summation convention. Quantities with a superscript M or F
refer to matrix or fiber related quantities, respectively. The superscript R is used to indicate
the matrix or fibers where no distinction between them is necessary. No summation is
assumed between a superscript and the corresponding identical subscript. It follows directly
that barred quantities with a superscript M or F (or R in general) refer to marix or fiber
related quantities, respectively, in the configuration C. For example, a is the composite
(overall) Cauchy stress in C, (i is the effective composite Cauchy stress in C, aM and a F are
the matrix and fiber stresses in C, respectively, and (iM and (iF are the effective matrix and
fiber stresses in C, respectively.

The constitutive model is first formulated in the configuration C of the composite
system. Then the hypothesis of elastic energy equivalence (Sidoroff, 1981) is used to trans­
form the model into the configuration C of the composite system. In this hypothesis, it is
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assumed that the elastic energy for a damaged material is equivalent in form to that of the
undamaged material except that the stress is replaced by the effective stress in the energy
formulation. For this purpose, certain transformation equations are derived for the com­
posite (overall) stresses and strains between the configurations C and C.

In the formulation, the Eulerian reference system is used, i.e. all quantities are based
on spatial coordinates. In Section 2.2, the necessary equations relating local and overall
quantities of the composite system are presented. The continuum damage mechanics equa:
tions are then derived in Section 2.3. Then the constitutive equations are derived in Section
2.4.

2.2. Composite analysis
In this section, the relations between the local (matrix and fiber) and overall (composite)

relations are presented in the configuration C. The analysis is based on the model given by
Dvorak and Bahei-EI-Din (1982, 1987) and Bahei-EI-Din and Dvorak (1989) utilizing a
representative volume element that is statistically homogeneous with uniform overall fields
of stress or strain. In this case, the composite system consists of an elastic metal matrix
reinforced by elastic, continuous aligned fibers.

In the configuration C, the effective stress tensor iiRis related to the effective composite
stress tensor ii by

(1)

where B~kl is a fourth-rank tensor indicating the elastic phase stress concentration factor
and the superscript R stands for either M or F. The tensor BR(x) depends only on the
spatial coordinates x for the case of elastic deformation. In order to determine BR

, certain
assumptions are employed, like the Voigt assumption where the matrix and fibers are
assumed to deform equally or the VFD assumption where the fibers are assumed to have
vanishing diameters while occupying a finite volume fraction. These two assumptions are
discussed briefly among others at the end of Section 2.4. The reader should note that the
tensor BR does not include any damage effect. This is the reason why effective stresses are
used in eqn (1) rather than the actual stresses. In the sequel, a damage phase stress
concentration factor will be derived in terms of BR and the damage variables.

As a result of volume integration and averaging of the local stress fields, the following
relation is obtained between the local (matrix and fiber) stresses and the overall stress in
C:

(2)

where eM and eF are the matrix and fiber volume fractions, respectively, given by:

(3)

In eqn (3), VM and VF are the matrix and fiber volumes, respectively, and V is the total
volume of the representative composite element. Using the assumption in eqn (2) and
substituting the relevant expressions for iiM and ii F from eqn (1), one derives the following
relation between the elastic stress concentration factors for the matrix and fibers:

(4)

where lJij is the Kronecker delta.
It is now seen that once the elastic matrix stress concentration factor BM is determined,

one can use eqn (4) to find the corresponding fiber stress concentration factor BF • It also
follows from the symmetry of the stress tensor and eqn (1) that the stress concentration
factors BM and BF are symmetric in the sense B~kl = B~kl' Although tensors BM and BF

have other symmetries, this is the only one needed in the derivations that follow.
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Next the effective matrix and fiber deviatoric stresses fM and iF, respectively, are
directly derived from eqn (1) as follows:

where the fourth-rank tensor FR is given by:

FR - BR IB R .<:ijkl - Ukl- 3 ppkl Vij'

Using the relation (6) above, one can derive the following two useful identities:

FR FR - B R FR
Ukl ijmn - ijkl limn'

(5)

(6)

(7)

(8)

In the next part of this section, the local-overall relationships for the effective strain
tensor 8 in the configuration Care presented. Upon volume integrating and averaging the
local stress fields (Dvorak and Bahei-EI-Din, 1982, 1987), the following local-overall
relation is obtained for the effective spatial strain tensor:

(9)

where the appropriate relations for the effective matrix and fiber strain tensors are used as
follows:

(10)

where A~kl is a fourth-rank tensor denoting the elastic phase strain concentration factor.
The same remarks outlined earlier about the tensor DR apply again to the tensor AR.

Substituting eqn (10) into (9), one derives the following relation between the elastic
matrix and fiber strain concentration factors:

(11)

It is now clear that once one of the elastic strain concentration factors is determined, eqn
(11) can be used to determine the other one.

On the other hand, one may start with the quantity (iiAj and expand it using eqns (2)
and (9). Then one substitutes for the local stresses and strains from eqns (1) and (11) and
simplifies to obtain:

(12)

The above equation represents the relation between the stress and strain concentration
factors for the matrix and the fibers. In view of the relations (5) and (12), it is clear that
eqn (12) reduces to an identity. It should be mentioned that once the stress concentration
factors B~kl and B~kl are determined, one can use eqn (12) to find a constraint relation
between the strain concentration factors A~kl and A~kl'

2.3. Damage analysis
There are two steps that can be followed in order to develop a continuum damage

model for a composite system consisting of fibers and a matrix. First, one considers damage
in the overall composite system as a whole continuum. At this step, the model will reflect
various types of damage mechanisms such as void growth and coalescence in the matrix,
fiber fracture, debonding and delamination, etc. It should be noted that at this step, no
distinction is made between these types of damage as they are all reflected through the
fourth-rank overall damage effect tensor M ijkl • In the second step, one considers the damage



Damage of fiber-reinforced composites 2761

that the matrix and fibers undergo separately such as nucleation and growth of voids and
void coalescence for the matrix and fracture for the fibers. In this case, two fourth-rank
matrix and fiber damage effect tensors M~k/ and Mijk/ are introduced that reflect all types
ofdamage that the matrix and fibers undergo. Subsequently, the local-overall relations are
used to transform these local damage effects to the whole composite system. Therefore, it
is clear that the second step does not account explicitly for such damage mechanisms as
debonding or delamination. It is also clear that each step has certain advantages and
disadvantages. While the first step accounts for all types ofdamage in the composite system,
it cannot distinguish between them. In contrast the second step provides separate damage
analysis of the matrix and fiber material but lacks the ability to account for fiber-matrix
interaction damage. Therefore, the aim of the proposed model will be to combine the two
aforementioned steps in such a way so as to isolate the various local types of damage.

Following the first step outlined above and utilizing an overall damage effect tensor
M for the whole composite system, the overall effective Cauchy stress tensor (j is given by

(13)

The above relation was first proposed for the uniaxial case by Kachanov (1958) and later
generalized to three dimensions by Murakami (1988) and Sidoroff (1981) in the framework
of the concept of effective stress. It then follows from eqn (13) that the overall effective
deviatoric Cauchy stress tensor t is given by (Kattan and Voyiadjis, 1990; Voyiadjis and
Kattan, 1992)

(14)

where the fourth-rank tensor N is given in terms of M as follows:

(15)

Certain useful identities follow directly from eqn (15). The main two identities used here
are listed below:

N rrk/ = 0, (16)

(17)

Next, the relation between the effective phase stress tensor (jR and the overall stress tensor
(J is derived. This is done by substituting eqn (13) into eqn (1). Therefore, one obtains:

(18)

where the fourth-rank tensor K~k/ is given by :

(19)

From the symmetry of B~mn discussed earlier, it follows from eqn (19) that the tensor KR

is symmetric in the sense K~k/ = KJ;k/' It should be noted that the tensor KR has other
symmetries, but these are not needed in the derivations.

Substituting eqn (13) into eqn (5), one obtains the following expressions for the
effective matrix and fiber deviatoric stress tensors:

(20)

where the fourth-rank tensor RR is given by:
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(21)

Upon examining eqns (5), (6), (20) and (21), one concludes that the tensors FRand RR are
symmetric in the sense F~kl = Ff;k' and R~kl = Rf;k" Furthermore, by substituting eqn (6)
into eqn (21) and using eqn (19), one can derive the following relation between the tensors
KRand RR:

(22)

The tensor RM satisfies the two identities discussed earlier, namely R~kl = 0 and
R~klR~mn = K~klR~mn' All these tensors have other symmetries but are not needed in the
derivations.

The overall damage relations for the composite system have now been presented in
eqns (13)-(22). The overall damage effect tensor M has been introducd to represent all
types of damage that the system undergoes. Following the second step discussed at the
beginning of this section, one introduces a phase (local) damage effect tensor M R that
represents the damage mechanisms in the phase material like nucleation, growth and
coalescence of voids for the matrix, and fracture of fibers. Therefore, the following local
transformation equation is assumed to hold for the phase stress tensor

(23)

It now follows directly from eqn (23) that

(24)

where the fourth-rank tensor NR satisifes the relations in eqns (15), (16) and (17). Com­
paring eqns (18) and (23) and simplifying, one derives the following relation between the
phase stress tensor and the overall stress tensor:

where

B- R _(MR )-IBR Mijkl - mnij mnpq pqkl,

(25)

(26)

where the inverse Wjjk~ of a fourth-rank tensor W jjkl is defined by Wijrnn W;;;nL = bik bjl. The
fourth-rank tensor DR is the damaged phase stress concentration factor that includes
geometrical and damage related effects as can be seen from eqn (26).

It is now possible to derive the required relationship between the local damage effect
tensors MM and M F and the overall damage effect tensor M. Substituting eqn (23) into eqn
(2) and simplifying, one obtains the desired relation:

(27)

It is clear that eqn (27) relates the local damage experienced by the matrix and fibers to the
overall damage of the composite system. The damaged matrix and fiber concentration
factors appear in the equation as well as the matrix and fiber volume fractions. Substituting
for DM and DF from eqn (26) into eqn (27), one obtains:

(28)

The above equation is an explicit relation between the effective local concentration
factors and the overall damage effect tensor. Examining eqns (27) and (28) carefully, one
concludes that once the local (matrix and fiber) damage mechanisms have been described
through the tensors MM and M F

, then the overall damage in the composite system can be
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described which includes the matrix and fiber related damage as well as the damage resulting
from the interaction of the two phases such as debonding.

2.4. Constitutive equations
In this section, the elastic constitutive relation for the damaged composite system will

be developed. First, one starts with the overall system and assumes the material obeys
generalized Hooke's law in the undamaged configuration C:

(29)

where Eijkl is the constant fourth-rank elasticity tensor. The corresponding effective elastic
strain energy 0 in this configuration is given by

(30)

One now uses the Legendre transform and applies it to eqn (30) in order to derive the
following expression for the effective elastic complementary strain energy V:

(31)

In the damaged composite configuration C, the elastic constitutive relation takes the form

(32)

where the fourth-rank tensor Eijkl is no longer constant but depends on the damage effect
tensor M ijkl• Using the hypothesis of elastic energy equivalence, by equating the energy in
eqns (34) in both the damaged and undamaged configurations, Le. V = V, one derives the
following expression for Eijkl (Kattan and Voyiadjis, 1990):

E- M-'E M- 1
ijk I = pqkl rspq rsij • (33)

Differentiating eqn (31) with respect to ii, and using eqns (13) and (33), one can obtain the
following transformation equation for the overall strain tensor in the configuration C:

(34)

The above eqns (29)-(34) are a brief review of the elastic constitutive relations for a
damaged one-phase material and can be used as the overall relations for the composite
system. Next, one considers the local stresses and strains in an attempt to formulate local­
overall equations for the damaged composite system.

Similar relations can be shown to exist on the local level, that is, the strain trans­
formation equations for the matrix and fibers are similar to eqn (34) and take the following
form:

-R (MR )-1 R
sij = ijmn Smn' (35)

One can now derive expressions for the damaged strain concentration factors. Substituting
the expressions of the transformation of the overall and local strains of eqns (34) and (35)
into eqn (10) and simplifying, one obtains

(36)

where the damaged strain concentration factor XR is given by:
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A- R - M R AR M- 1
ijkl - mnij mnp'I pqkl' (37)

One then assumes the generalized Hooke's law to hold for each of the phases in the
configuration e, that is

(38)

where EDkl is the constant elasticity tensor for the phase material. Substituting eqns (29)
and (38) into eqn (2) along with eqns (10) and (II) and simplifying, one obtains the
following local-overall relation for the. undamaged elasticity tensors:

E - MA M EM FA F EF
ijkl - e ijmn mnkl +e ijmn mnkl' (39)

Assuming similar local relations to hold as those of eqn (38) in the configuration C, one
has

(40)

where the tensor lDkl is the damaged elasticity tensor for the phase material. Substituting
eqns (32) and (40) into an equation similar to eqn (2), written in the configuration C, along
with eqns (35) and simplifying, one obtains

(4l )

Next, one considers the transformation equations for the local moduli of elasticity
E~l and E~kl' Starting with eqn (41) and substituting for E from eqn (33), for AM and AF

from eqns (37) and for E from eqn (39) and simplifying, one obtains:

(42)

The remainder of this section is left to determine a proper transformation relation for the
phase volume fractions eM and eF. The authors see no direct way ofderiving such equations
at the present time. However, in view of the relation given in eqn (33), the scalar ratios
eM /eM and e

F/cF can be determined by comparison. Therefore, the following transformation
equation is listed here without proof:

(43)

Upon substituting the above transformation equation for eR into eqn (42), one obtains
simple relations for the transformation of the local moduli of elasticity similar to that of
eqn (33). It should be noted that eqn (43) does not imply a change in the phase volume
fractions. The quantities eM and eF represent effective phase volume fractions in the fictitious
undamaged configurations eM and eF, respectively. They should be regarded similarly to
the effective stresses aM and aF where they do not represent actual quantities, but effective
quantities in the context of continuum damage mechanics. The constitutive theory as well
as the relevant transformation equations have been presented for the analysis of damage
and small elastic deformation of fiber-reinforced composite materials. This is illustrated in
detail in Section 4 for the case of uniaxial tension.

The rest of this section is left for a briefdiscussion of the stress and strain concentration
factors. The simplest model available involves the Voigt assumption where the matrix, fiber
and overall strain rates are assumed equal. In our case, the Voigt model is applied to the
configuration e in the form 8;: = tf; = 8ij' Substituting these into eqn (10) immediately
results in A~kl = A~kl = 1/2(bik bjl+bi/bjk ). Using this result along with eqns (1), (29) and
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(38) will yield B~kl = EtJmnEid~n and B~kl = E~mnE;;~. Another widely known model is the
Vanishing Fiber Diameter (VFD) model. In this model, it is assumed that the cylindrical
fibers have vanishing diameters while occupying a finite volume fraction of the composite.
However, the resulting equations are not as simple as those of the Voigt model and the
reader is referrred to Dvorak and Bahei-EI-Din (1979, 1982) for a detailed discussion of
the VFD model. Finally, it should be noted that more sophisticated models (Mori and
Tanaka, 1973) can also be used.

3. EVOLUTION OF DAMAGE

In order to study the evolution of damage in composite materials, one first needs to
investigate the nature of the fourth-rank damage effect tensor M. It has been shown
(Voyiadjis and Kattan, 1992) that using the Voigt notation for stresses and strains (i.e.
representing them as vectors instead of tensors), the tensor M jjkl can be represented by a
6 x 6 matrix in terms of a second-rank damage tensor q,. Therefore, it is clear (Voyiadjis
and Kattan, 1992) that the study of damage evolution involves the determination of
an appropriate kinetic equation for the tensor tPjj' One introduces the generalized
thermodynamic force Yjj that is associated with tPjj by the definition (Lemaitre, 1985) :

au
Yjj = aA. .. '

'/"1

(44)

such that ¢ijYij is the power dissipated due to the damage. The criterion for damage
evolution used here is that proposed by Lee et al. (1985) and is given by the function g(y, B)
defined by:

g(y, B) = 1JijkIYijYkl-B(P) = 0, (45)

where B(P) is a function of the overall damage parameter P and Jijkl is a constant fourth­
rank tensor that can be represented by a constant 6 x 6 matrix (Lee et al., 1985; Voyiadjis
and Kattan, 1992). In order to develop an evolution equation for the damage variable tP,
one considers the power of dissipation n given by:

(46)

The problem is to extremize n subject to the constraint g = O. Therefore, one introduces
the Lagrange multiplier i and uses the Lagrange multiplier method to obtain i =Pand

. . ag
tPpq = -P ay .pq

In order to determine p, one uses the consistency condition iJ = 0 in the form

(47)

(48)

Substituting for the partial derivatives of g from eqn (45) into eqn (48) and solving for p,
one obtains:

p= i = JpqmnYmnYpq
aBlap . (49)

Substituting the above expression of pinto eqn (47), one obtains the required evolution
equation for the damage tensor tPij:
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(50)

The solution of the above kinetic equation hinges on the determination of an appro­
priate expression for the function B(fJ). One may use a linear function in the form
B(fJ) = c, fJ + C2 where CI and C2 are constants. This is motivated by analogy to the isotropic
hardening parameter K in the theory of plasticity, where the evolution of II: is taken to be
K = (e;;e;j) 112 where tij is the rate of plastic strain. Analogously, using iJ = (/Jrh '/2 will yield
a linear function B(fJ) as proposed above. An example is given in the next section where
the evolution equation is solved for the case of uniaxial tension with a linear function B(fJ).

4. EXAMPLE I: UNIAXIAL TENSION OF A UNIDIRECTIONAL LAMINA

Consider a unidirectional fiber-reinforced thin lamina that is subjected to a uniaxial
tensile force T along the x ,-direction as shown in Fig. 1. The lamina is made of an elastic
matrix with elastic fibers aligned along the XI-direction. The X2- and Xraxes are assumed to
lie in the plane of the lamina. Let dS be the cross-sectional area of the lamina with dSM and
dSF being the cross-sectional areas of the matrix and fibers, respectively. In the fictitious
undamaged configuration, let the cross-sectional areas of the lamina, matrix and fibers be
denoted by dS, dSMand dSF

, respectively. Since the lamina strictly consists of a matrix
and fibers, it is clear that dSM+dSF = dS, dSM+dSF = dS, dS ~ dS, dSM ~ dSM and
dSF ~ dSF (Kattan and Voyiadjis, 1992).

The overall stress, strain and damage tensors (1, 6 and cP for this problem can be
represented using the following vectors:

(51 )

with similar vector representations for their corresponding effective and local counterparts.
The uniaxial stress (J appearing in eqn (51) is clearly given by (J = T/dS with the uniaxial

Xl
II F

T as ~ as ~ as

0(2)(2) 0

(2) (2) f2> <Q)

I
I
I
I
I
I
I
I
I
.1-__ ---+--_ X3

//~

X2

Fig.!. Unidirectional lamina under uniaxial tension.
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effective stress rJ given by rJ = T/dS. The overall damage variable ¢ 1is defined by (Kach­
anov,1958)

A.. _ dS-dS
'1'1 - dS . (52)

It is clear from eqn (52) that 4>1 takes the values between 0 for undamaged material
to I for (theoretically) complete rupture. However, the actual value 4>cr where failure occurs
is less than 1 and satisfies 0 ::::; ¢ < 4>cr < I. Two local damage variables 4>~ and ¢f can be
analogously introduced and defined by:

(53)

It follows directly from eqn (53) that 0 ::::; 4>f ::::; 1. Using eqns (52) and (53) along with the
area relations discussed in the beginning of this section, one can easily derive the following
relation between the local and overall damage variables:

(54)

It should be mentioned that the uniaxial local and overall stresses a, aM and aF satisfy
a similar relatiori to that of eqn (54) and is given in tensor form by eqn (2). The relation
between the overall stress a and its effective counterpart rJ can be easily shown to be given
by

a
rJ = ~~--.

1-4>1
(55)

Using eqn (2) and a similar equation for the effective stress, one can assume the local
stresses to be given by :

(56)

In view of eqn (55), it is clear that the relations (56) satisfy the requirements given by
eqn (2). Comparing eqns (55) and (56) with the general transformation equations (13) and
(23) and considering the notation of eqn (51) for this problem, the damage effect tensors
M, MM and M F can be represented by the following matrices:

0 0

I
M=: 0 -- 0

1-¢2

I
0 0

1-4>3

I
0

I=¢f
0

M R =:
I

0
1-4>~

0

0
I

0
-1-4>~

SAS 30120-D

(57)

(58)
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It should be mentioned that the matrix representation of the damage effect tensor M
of eqn (57) applies only to the problem of uniaxial tension considered here. For a general
matrix representation of the tensor M, the reader is referred to the recent paper by Voyiadjis
and Kattan (1992).

The overall elasticity tensor Eijkl can be represented by the following matrix where an
orthotropic material is assumed:

I -V2l -V31
---
E, E 2 E 3

E- I ==
-V12 -V32

(59)
E 1 E 2 E 3

-V'3 -V23
~-

E, E 2 E 3

Using the representations of M and E in eqns (57) and (59), and substituting them into the
transformation equation (33), one obtains the following matrix for the damaged elasticity
tensor Eijkl:

I -V21 -V31
E 1(1-4>1)2 E2(1-4>I)(1-4>2) E3(1-4>,)(I-4>3)

[-I == -V'2 I -V32

E I(1-4>I)(1-4>2) E2(1-4>2)2 E 3(1-4>2)(1-4>3)
(60)

-V13 -V23 I

E 1(1-4>I)(I-4>3) E2(1- 4>2)(1- 4>3) E 3(1-4>3)2

Considering a matrix representation for [-I similar to that of eqn (59) but with all
quantities replaced by barred quantities and comparing it with the matrix in eqn (60), one
obtains the following transformation equations for the overall elastic properties:

(61)

i,j= 1,2,3(nosum). (62)

Next, one uses the transformation equation (26) for the phase stress concentration
factors, and substitutes for the damage effect tensors from eqns (57) and (58) to derive the
following matrix representation for the damage phase stress concentration factor Sf;kl :

1-4>~ R 1-4>~ R 1-4>~ R
1-4>, B I, 1_4>2

BI2
1-4>3

BI3

jjR == 1-4>~ R 1-4>~ R 1-4>~ R (63)
1-4>1 B 21 1_4>2

B22
1_4>3

B23 ,

1-4>~ R 1-4>~ R 1-4>~ R
1-4>1 B 31 ---B32 ---B

1-4>2 1-4>3 33

where the terms Bf; are the elements of the matrix representation of Btkl'
Similarly, one uses the transformation equation (37) for the strain concentration factors

to derive the following matrix representation for the damaged phase strain concentration
factor Atkl :
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(64)

where the terms A~ are the elements in the matrix representation of A~k/'
Finally, one writes the transformation equations for the volume fractions cM and cF

.

Using eqn (43) along with the matrix representations (57) and (58), one derives:

-R R I -4>fc =c .
I I

(65)

Alternatively, the above relations can be derived independently using the definitions of cM

and cF as area fractions for this problem, along with eqns (52) and (53). Finally, one can
use eqns (42) and (43) to derive transformation equations for the local elastic properties.
However, the resulting equations are similar to eqns (61) and (62) with superscripts M or
F and will not be listed here.

In order to characterize damage evolution for this problem, one uses eqn (50). For
this problem, the kinetic equation (50) reduces to

(66)

where 4>1 and YI stand for the tensor components 4>11 and YIl> respectively. Using a linear
function B(P) = CIP+C2 where CI and C2 are constants, substituting it into eqn (66) and
solving the differential equation, one obtains

(67)

The above equation represents the relation between the damage variable 4> I and its associ­
ated thermodynamic generalized force YI for the case of uniaxial tension. One then sub­
stitutes for Y I from eqn (44) along with eqn (30) into eqn (67) to obtain:

(68)

Equation (68) represents the overall strain-<lamage relation for the case of uniaxial
tension. Similar relations can be derived for the local strain and damage variables.

5. EXAMPLE 2: A UNIDIRECTIONAL LAMINA UNDER PLANE STRESS

Consider a unidirectional fiber-reinforced thin lamina that is subjected to a case of
plane stress in the 1-2 plane as shown in Fig. 2. The lamina is made of an elastic material
with elastic fibers aligned along the xI-axis. Both the XI- and X2-axes are assumed to lie in
the plane of the lamina, while the x3-axis lies in the transverse direction to that plane. A
complete damage state is considered, although the lamina is under plane stress. Therefore,
all the damage variables are assumed nonzero in this example. For this case of plane stress,
the stress and damage tensors are represented by the following matrices :
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~Xl

xC: I
X3

Fig. 2. Unidirectional lamina under plane stress in the 1-2 plane.

["" IT 12 n[ITiil = IT~ 2 IT 22

0

[~"
4> 12

~"][4>d = ¢12 ¢22 ¢23 .

¢13 ¢23 ¢33

(69)

(70)

The transformation equation (13) gives rise to a nonsymmetric effective stress tensor.
Therefore, before proceeding with this example, one needs to symmetrize the effective stress
tensor ii. One of the most popular symmetrization procedures is given by the equation

(71 )

Before substituting eqns (69) and (70) into eqn (71), one needs to find the inverse of the
tensor 0u- ¢u' This is found simply by obtaining the inverse of the matrix [ou- ¢u] through
the use of the symbolic manipulation program REDUCE. The resulting matrix is given as:

[

(1- ¢22)(I- ¢33) - ¢~3

x ¢13¢23 +¢12(1-4>33)

¢124>23+4>13(l-¢22)

where A is given by

¢13¢23+¢12(1-¢33)

(l-¢11)(l-4>33)-¢~3

¢124>13+¢23(l-¢11)

¢ 12¢23 + 4> dl - 4>22) ]
4>124>13+¢23(1-¢1l) , (72)

(1-4>11)(l-¢22)-¢~2

A = (1-4>11)(1-¢22)(1-¢33) 4>~3(1-¢11)

-4>iJO -¢n>-4>~2(l-¢33)-2¢12¢23¢13' (73)

Next, one substitutes eqns (69) and (73) into eqn (71) and simplies the resulting matrix.
Using the vector representation [IT I I (122 (1!2lT for the stress tensor a, and likewise using
[0' I I 0'22 0' IzIT for the effective stress tensor ii, the resulting equation can be rewritten as:
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(74)

where the coefficients of the matrix M of eqn (74) are given by:

M 12 = M ZI = 0,

(75a)

(75b)

(75c)

(75d)

(75e)

(75f)

The above equations were obtained using the symbolic manipulation program REDUCE.
For the case of plane stress discussed in this section, the overall elasticity tensor E jjkl

is written here for an orthotropic material indirectly in the following form :

V 12 0
E I E,

E- I = VZ1 0 (76)
Ez Ez

0 0
G12

Using the representation of M and E- I in eqns (75) and (76) and substituting them into
the transformation equation (33), one obtains the following matrix for the damaged elas­
ticity tensor Ejikl :

--I 1 Gil
E = AZ E 12

\3

(77)

where the terms in the above matrix are given by:

Mil Mi3
Ell =E;-+ 2G

lz
'

ML Mi3
E22 =~+ 2G

lz
'

E =lMz (~+~_~_~)+(MII+MZZ)Z
33 Z 13 E

I
Ez E

I
Ez 4G

lz
'

M\lMzz Mi3
E lz = -V12 E

I
+ 2G

lz
'

(78a)

(78b)

(78c)

(78d)
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(78e)

(78f)

The inverse of the matrix in eqn (77) should be equivalent to the effective elasticity
--1 .tensor EUkl given by:

"12 0
£1 - £1

t- 1 = "21 I

£2 £2
0 (79)

0 0
0 12

The relations between the elastic constant E I> E 2, V 12> G 12 and the effective elastic variables
£1> £2' "12 and 0 12 can be obtained by equating eqns (77) and (79). After some lengthy
algebraic manipulations one arrives at the following relations:

(80a)

(80b)

(80c)

(80d)

In addition, one obtains the following relation:

(81)

The above relation holds for the damaged composite system and is similar to the usual
composite relation for effective quantities "12£2 = "21£1' It should be noted that in eqn
(80a), £1 is a function of both E 1 and Vl 2 in addition to the damage variables. Similarly, in
eqn (80b), £2 depends on E2 , V21 and the damage variables. On the other hand, it is clear
from eqns (80c) and (80d) that "12 depends only on V12 and 0 12 depends only on G I2 in
addition to the damage variables. An expression for "21 in terms of V21 can be obtained
similar to eqn (8Oc).

When using the principal damage variables 4>1> 4>2 and 4>3' eqns (80) reduce to:

(82a)

(82b)

(82c)
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_ (2d)2
G12 = G12 MM'II + 22 (82d)

Substituting for M I), M n and d from eqns (75) into eqns (82), keeping in mind that
<P13 = <P23 = <P12 = M 13 = 0, one obtains:

£1 = E I (I-<P1)2,

£2 = E2(1-<P2)2,

_ 1-<P1
VI2 = VI21_<P2'

(83a)

(83b)

(83c)

(83d)

Equations (83a)-(83c) are similar to eqns (61) and (62). Thus, the expressions involving
principal damage variables reduce to those of the uniaxial tension case of the previous
example. The only new equation here is eqn (83d) which relates shear quantities that do
not exist in the uniaxial tension case.

Equations (83a) and (83b) are easily interpreted by the deterioration of the stiffnesses
£) and £2 for a damaged composite system. In this case, the stiffness degradation is
parabolic as shown in Fig. 3 for £1' The influence ofdamage on Poisson's ratio VI2 is shown
in Fig. 4. This graph is plotted using eqn (83c) showing the variation of the ratio VI2/V12
with the principal damage variables <PI and <P2' It is clearly shown that when <PI = <P2 = 0,
the ratio VI2/V I2 = 1. When <PI = 0, the ratio vu/vI2 becomes the hyperbola 1/(l-<P2)'
When <P2 = 0, the ratio VdVI2 becomes the straight line 1-<PI' On the other hand, when
<PI approaches I, the value ofvI2 clearly approaches zero. Also, when <P2 approaches 1, the
ratio V12/V12 approaches infinity indicating complete rupture.

Figure 5 shows the variation of the shear modulus ratio Gu/G12 with the principal
damage variables <PI and <P2 as given in eqn (83d) for selected values of <P3' In Fig. 5(a), the
value of <P 3 = 0 is used in the results. It is clear that for the case of no damage (<p I = <P 2 = 0),
the ratio Gu/G I2 is equal to 1. However, when <PI = 0, the ratio approaches the hyperbola
[2(1- <P2)2/(l + (1- <P2)W, A similar hyperbola is obtained in the variable <P I when <P2 = o.
It is interesting to note that when either <P lor <P2 approaches 1 (indicating complete rupture),
the value of G12 becomes identically zero. Therefore, the effective elastic moduli vanish

1.00

0.80

0.60

EI
E,

0.40

0.20

1.000.80020
0.00 TrrTTTT'TT1TTTTTT"rrnTTTTTnrrnTTTT'TT1OTTTTT"":;::;'''f'T'T'l

0.00

Fig. 3. Variation of EdE, with the damage variable ¢,.
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Fig. 4. Variation of \'12fVI2 with the damage variables <P I and <P2'

when the composite system undergoes complete rupture. Figures 5(b) and 5(c) show the
results for values of 1>3 of 0.25 and 0.5, respectively.

The phase damage effect tensor M~kl is considered here to have the same form as the
overall damage effect tensor M given in eqns (74) and (75). This tensor takes the form:

o
(84)

12.131013.2""1

,1---------------------- _
I

", I
, I

, I

i I
I I

, I
, I

, I
, I

I I
, I

I

"-
(l)

6

0'

'"is>
C'J

GI2
Ln

6
Gi2 Ln

M

6

~

6

<1>1

Fig. 5(a). Variation of G12fG 12 with the damage variables <PI and <p,.
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AR = (l-4>~I)(1-4>~z)(1-¢~3)- (¢~3)Z(I-.p~!)

_(4)M2(l-4>~2)- (4)~2)2(l-<P~3) - 24>~2¢~3<Pf3' (85a)

M~l = (l-4>~2)(1-<P~,)-(tP~3)2, (85b)

M~2 = (l-tP~I)(1-<P~,)-(¢>~3)2, (8Se)

M~3 =4>~2<P~3+¢~2(l-<P~3). (85d)

The expressions for M R and M given in eqns (75) and (85), respectively, are substituted
into the transformation equation (26) to obtain the matrix and fiber stress concentration
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factors for the case of plane stress. The phase stress concentration factors B~ are then given
~: .

B~, III 112 113 114 115 116 B~I

B~2 112 122 123 124 125 126 B~2

B~3 113 123 133 134 135 136 BR
33

B~2
=L

141 142 143 144 145 146 B~2

B~3 151 152 15] 154 155 156 B~3

B~3 161 h2 h3 164 h5 166 B~3

where L is given by :

d
L = dR[M~I(M~2)2+(M~I)2M~2 (M~3)2(M~1 +M~2)]'

(86)

(87)

The coefficients Iii in the above matrix are given in the Appendix and the terms B~ are the
elements of the matrix representation of the tensor B~kl' .

In the same way, one can use the transformation equation (37) for the strain con­
centration factors AtL and Ar;kl to obtain results corresponding to eqn (86). The resulting
coefficients look similar to those in eqns (A I)-(A33) of the Appendix and are not shown
here for the sake of simplicity.

6, CONCLUSION

A micromechanical model is formulated to study damage in fiber-reinforced composite
materials. The composite material is asssumed to consist of an elastic matrix and elastic,
aligned fibers. In the formulation, small elastic strains are assumed. An overall damage
variable is introduced to model damage in the composite system while two local damage
variables are used to model damage in the matrix and fibers. The overall and local damage
variables are then related through the matrix and fiber volume fractions. The concept of
effective stress and the hypothesis of elastic energy equivalence are used to derive the
transformation equations between the damaged configuration and the fictitious undamaged
configuration. In addition, new expressions are derived for the stress and strain con­
centration factors of the damaged composite.

The model is applied to a unidirectional fiber-reinforced thin lamina subjected to
uniaxial tension. It is also applied to a unidirectional thin lamina subjected to a state of
plane stress. In these examples, explicit expressions are derived for the overall and local
damage effect tensors through their matrix representations. The relations between the
damaged and undamaged elastic properties are also derived using the proposed model.
Stress and strain concentration factors for the damaged matrix and fibers are also derived
in terms of the undamaged concentration factors and the damage variables. The research
presented in this work is the three-dimensional generalization of the uniaxial tension model
derived previously by the authors (Kattan and Voyiadjis, 1993).

In this manuscript, it is the aim of the authors to provide at least one example where
an analytical solution is possible. The authors are currently engaged in the finite element
implementation of this theory in order to tackle more complicated problems and simulate
actual damage processes. In addition, the authors have conducted experiments on titanium
plates reinforced with SiC fibers in order to validate the numerical results. The authors wish
to limit the present manuscript to the theoretical formulation of the theory and present the
results of their numerical and experimental work in a forthcoming paper (for more details
see Voyiadjis et al., 1993).
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APPENDIX

(AI)

(A2)
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/,) = -MIJM~2M~3'

/'4 = MI1(M~)2,

/15 = MnI(M~2)2+M~,M~2-(M~3)21-2M"M~2M~),

/16 = MI3(M~)2,

/22 = Md(M~I)2+M~IM~2-(M~3)2),

/2) = -M,)M~,M~),

/24 = M22(M~)2,

/25 = MdM~)2,

/26 = MnI(M~I)2+M~,M~2-(M~)21-2M22M~,M~),

1)3 = M~,M~2(MII +M2z),

/34 = - M lJM~J(M~, +M~2)'

/)5 = -M~2(MIIM~3-2M~,MlJ+M22M~),

/)6 = -M~,(M22M~)-2M~2M,)+MI1M~),

/41 = 0,

/42 = MdM~)1,

/43 = - MlJM~1M~),

/44 = Md(M~1)2+M~,M~2-(M~)21,

/45 = MnI(M~2)2+M~,M~2-(M~3)2),

/46 = M~)(M'3M~3 -2M22M~2)'

151 = MIJ[(M~2)2+M~,M~2-(M~)21,

/'1 = M'3(M~3)'

/5) = -M~1M~)(MII+M22)'

/'4 = M,)M~2(M~, +M~2)'

/" = M22[(M~2)2+M~IM~2-(M~J)21+MMMI\M~2+MI\M~,-2MIJM~)-MI\(M~)2,

/56 = M~)(MI\M~J+M11M~3-2M'3M~2)'

/61 = MIJ(M~)1,

/62 = MI)[M~IM~2+(M~I)2_(M~)2),

/63 = -M~IM~3(MI\ +M22 ),

/64 = MI3M~I(M~, +M~2)'

/65 = M~3(MI\M~3+M22M~3-2M~,MI3)'

/ •• = MdM~IM~2+(M~I)2_(M~3)21+M~I(MIIM~2+M,IM~,-2MI3M~3)-M,I(M~3)2.

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(AIO)

(All)

(AI2)

(Al3)

(AI4)

(AI5)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)
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